552 research outputs found

    Classification and reduction of pilot error

    Get PDF
    Human error is a primary or contributing factor in about two-thirds of commercial aviation accidents worldwide. With the ultimate goal of reducing pilot error accidents, this contract effort is aimed at understanding the factors underlying error events and reducing the probability of certain types of errors by modifying underlying factors such as flight deck design and procedures. A review of the literature relevant to error classification was conducted. Classification includes categorizing types of errors, the information processing mechanisms and factors underlying them, and identifying factor-mechanism-error relationships. The classification scheme developed by Jens Rasmussen was adopted because it provided a comprehensive yet basic error classification shell or structure that could easily accommodate addition of details on domain-specific factors. For these purposes, factors specific to the aviation environment were incorporated. Hypotheses concerning the relationship of a small number of underlying factors, information processing mechanisms, and error types types identified in the classification scheme were formulated. ASRS data were reviewed and a simulation experiment was performed to evaluate and quantify the hypotheses

    3D Radiative Hydrodynamics for Disk Stability Simulations: A Proposed Testing Standard and New Results

    Full text link
    Recent three-dimensional radiative hydrodynamics simulations of protoplanetary disks report disparate disk behaviors, and these differences involve the importance of convection to disk cooling, the dependence of disk cooling on metallicity, and the stability of disks against fragmentation and clump formation. To guarantee trustworthy results, a radiative physics algorithm must demonstrate the capability to handle both the high and low optical depth regimes. We develop a test suite that can be used to demonstrate an algorithm's ability to relax to known analytic flux and temperature distributions, to follow a contracting slab, and to inhibit or permit convection appropriately. We then show that the radiative algorithm employed by Meji\'a (2004) and Boley et al. (2006) and the algorithm employed by Cai et al. (2006) and Cai et al. (2007, in prep.) pass these tests with reasonable accuracy. In addition, we discuss a new algorithm that couples flux-limited diffusion with vertical rays, we apply the test suite, and we discuss the results of evolving the Boley et al. (2006) disk with this new routine. Although the outcome is significantly different in detail with the new algorithm, we obtain the same qualitative answers. Our disk does not cool fast due to convection, and it is stable to fragmentation. We find an effective α≈10−2\alpha\approx 10^{-2}. In addition, transport is dominated by low-order modes.Comment: Submitted to Ap

    Hydraulic/Shock-Jumps in Protoplanetary Disks

    Full text link
    In this paper, we describe the nonlinear outcome of spiral shocks in protoplanetary disks. Spiral shocks, for most protoplanetary disk conditions, create a loss of vertical force balance in the post-shock region and result in rapid expansion of the gas perpendicular to the disk midplane. This expansion has characteristics similar to hydraulic jumps, which occur in incompressible fluids. We present a theory to describe the behavior of these hybrids between shocks and hydraulic jumps (shock bores) and then compare the theory to three-dimensional hydrodynamics simulations. We discuss the fully three-dimensional shock structures that shock bores produce and discuss possible consequences for disk mixing, turbulence, and evolution of solids.Comment: 39 pages, 18 figures, 1 table. Edited to match as closely as possible the ApJ proofs, which resulted in the correction of several typos. In addition, section 5.3 was slightly altered because an error in an analysis tool was discovered; the differences between the entropy gradient method and the Schwarzschild criterion method are minor. Figure 18 now only includes what was Figure18

    The Thermal Regulation of Gravitational Instabilities in Protoplanetary Disks III. Simulations with Radiative Cooling and Realistic Opacities

    Get PDF
    This paper presents a fully three-dimensional radiative hydrodymanics simulation with realistic opacities for a gravitationally unstable 0.07 Msun disk around a 0.5 Msun star. We address the following aspects of disk evolution: the strength of gravitational instabilities under realistic cooling, mass transport in the disk that arises from GIs, comparisons between the gravitational and Reynolds stresses measured in the disk and those expected in an alpha-disk, and comparisons between the SED derived for the disk and SEDs derived from observationally determined parameters. The mass transport in this disk is dominated by global modes, and the cooling times are too long to permit fragmentation for all radii. Moreover, our results suggest a plausible explanation for the FU Ori outburst phenomenon.Comment: 45 pages, 17 figures; submitted to Ap

    Orbital characterization of the \beta Pictoris b giant planet

    Full text link
    In June 2010, we confirmed the existence of a giant planet in the disk of the young star Beta Pictoris, located between 8 AU and 15 AU from the star. This young planet offers the rare opportunity to monitor a large fraction of the orbit using the imaging technique over a reasonably short timescale. Using the NAOS-CONICA adaptive-optics instrument (NACO) at the Very Large Telescope (VLT), we obtained repeated follow-up images of the Bpic system in the Ks and L' filters at four new epochs in 2010 and 2011. Complementing these data with previous measurements, we conduct a homogeneous analysis, which covers more than eight yrs, to accurately monitor the Bpic b position relative to the star. On the basis of the evolution of the planet's relative position with time, we derive the best-fit orbital solutions for our measurements. More reliable results are found with a Markov-chain Monte Carlo approach. The solutions favor a low-eccentricity orbit e < 0.17, with semi-major axis in the range 8--9 AU corresponding to orbital periods of 17--21 yrs. Our solutions favor a highly inclined solution with a peak around i=88.5+-1.7 deg, and a longitude of ascending node tightly constrained at Omega = -147.5+-1.5 deg. These results indicate that the orbital plane of the planet is likely to be above the midplane of the main disk, and compatible with the warp component of the disk being tilted between 3.5 deg and 4.0 deg. This suggests that the planet plays a key role in the origin of the inner warped-disk morphology of the Bpic disk. Finally, these orbital parameters are consistent with the hypothesis that the planet is responsible for the transit-like event observed in November 1981, and also linked to the cometary activity observed in the Bpic system.Comment: 10 pages, 12 figures, accepted to A&
    • …
    corecore